汽车发动机结构(发动机缸体) ♂
汽车发动机结构(发动机缸体)《汽车发动机活塞的基本结构如何》
活塞的基本结构可分为顶部、头部和裙部三部分。活塞的顶部是燃烧室的下底部,承受高温气体的压力。其形状选择与燃烧室的形式有关。汽油机的活塞顶一般是平的,柴油机的活塞顶常是凹的,二冲程汽油机的活塞常是凸的。活塞头是活塞环槽上方的部分,用于安装活塞环。活塞裙是指从油环槽下端到活塞底面的部分。活塞运动时,活塞头围绕活塞销连续轻微摆动。为了尽量减少活塞头的摆动,裙部做成椭圆形,其长轴方向与活塞销成直角。裙部的作用是引导活塞在气缸内作往复运动并承受侧压力。汽车发动机的活塞是由铝合金压铸而成,其基本形状为自上而下直径逐渐增大的圆柱形气缸。
《汽车发动机燃烧室结构有哪些要求》》
燃烧室的大小和形状对发动机运行过程中火焰传播距离、火焰传播速度、散热损失和充气效率有较大影响。为了使发动机功率大、经济性好、燃烧正常、尾气污染低,对燃烧室的基本要求如下。① 结构紧凑,散热面积小,火焰传播距离短,减少突然爆炸的倾向。② 在压缩冲程结束时,使可燃混合气或空气(柴油机)产生强烈的湍流,使混合气混合均匀,提高燃烧率和燃烧效率。
《汽车发动机结构图》
汽车发动机的结构图如下:
发动机由曲柄连杆机构和气门机构两大机构,以及冷却、润滑、点火、供油、启动系统5大系统组成。
主要部件有缸体、缸盖、活塞、活塞销、连杆、曲轴、飞轮等。往复活塞式内燃机的工作腔称为汽缸,汽缸的内表面为圆柱形。气缸内的往复活塞通过活塞销与连杆的一端铰接,连杆的另一端与曲轴连接。曲轴由缸体上的轴承支撑,并可在轴承内转动,构成曲柄连杆机构。当活塞在气缸内往复运动时,连杆推动曲轴旋转。
反之,当曲轴转动时,连杆轴颈在曲轴箱内作圆周运动,连杆带动活塞在气缸内作上下运动。曲轴每转一圈,活塞上下运动一次,气缸容积不断由小变大,再由大变小,以此类推。气缸顶部用气缸盖封闭。
发动机性能指标用于表征发动机的性能特性,作为评价各种发动机性能的依据。发动机性能指标主要包括:动力指标、经济指标、环保指标、可靠性指标和耐久性指标:
1。功率指标:一般用发动机的有效扭矩、有效功率、发动机转速等。作为评价指标。
2。经济指标:发动机经济指标一般用有效油耗率表示。发动机每输出1kW·h有效功率消耗的燃料量(g)称为有效燃料消耗率。
3。环境指标:车辆排放标准和车辆噪声级,汽车噪声不大于79dB(A)。
4。可靠性指标和耐久性指标:表示发动机在规定的使用条件下,在规定的时间内正常连续工作的能力的指标。可靠性评价方法有多种,如首次故障里程、平均故障间隔里程等。耐久性指标是指发动机主要部件磨损到不能继续正常工作的极限时间。汽车发动机是由多个机构和系统组成的复杂机器。汽油机主要由“两大机构”和“五大体系”组成。(1)曲柄连杆机构由缸体、缸盖、活塞、连杆曲轴、飞轮等零件组成。(2)气门机构由气门、气门弹簧、凸轮轴、挺杆、凸轮轴传动机构等部件组成。(3)供油系统化油器型由油箱、汽油泵、汽油滤清器等组成。电控燃油喷射由供气系统、供油系统和电控系统组成。(4)传统点火系统由电池、发电机、点火线圈、断路器、火花塞等组成。普通点火系统与传统点火系统类似,只是断路器由电子元件代替。所有电子点火系统都是全电子点火系统,完全消除机械装置,电子系统控制点火正时,包括电池、发电机、点火线圈、火花塞和电控系统等。(5)水冷冷却系统由水套、水泵、散热器、风扇、温控器等组成。风冷式由风扇和散热器等组成。(6)润滑系统由油泵、滤清器、限压阀、油路、滤油器等组成。(7)起动系统由起动机附件组成。由于柴油机采用压燃式驱动,没有点火系统,其他部分系统结构与汽油机几乎相同。原发布者:季永秋
发动机结构图 内燃机的分类方法很多。根据不同的分类方法,内燃机可以分为不同的类型。我们来看看内燃机是如何分类的。(1)根据使用的燃料,内燃机按使用的燃料不同可分为汽油机和柴油机(图1-1)。以汽油为燃料的内燃机称为汽油机; 以柴油机为燃料的内燃机称为柴油机。与柴油机相比,汽油机各有特点; 汽油机转速高、质量低、噪音低、启动容易、制造成本低; 柴油机压缩比大,热效率高,经济性能和排放性能优于汽油机。2)按冲程分类内燃机按完成一个工作循环所需的冲程数可分为四冲程内燃机和二冲程内燃机(图1-2)。转动曲轴两次(720°),活塞在气缸内上下往复运动四冲程。完成一个工作循环的内燃机称为四冲程内燃机; 当曲轴旋转一圈(360°)时,活塞在气缸内作上下往复运动。运动两冲程并完成一个工作循环的内燃机称为二冲程内燃机。四冲程内燃机广泛应用于汽车发动机。(3)内燃机按冷却方式分类 按冷却方式不同,可分为水冷发动机和风冷发动机(图1-3)。水冷发动机利用在气缸体和气缸盖冷却水套中循环的冷却液作为冷却介质进行冷却; 而风冷发动机则是利用在气缸体和气缸盖外表面翅片之间流动的空气作为冷却介质冷却。水冷发动机冷却均匀,运行可靠,冷却效果好。广泛应用于现代汽车发动机。4) 根据气缸数,内燃机按气缸数可分为单缸发动机和多缸发动机(图1-4)。只有一个气缸的发动机称为单缸发动机; 有两个你想要的?
我可以截图给你
《汽车发动机的结构》?》
汽车动力之源
汽车的动力源是发动机,发动机的动力来自气缸内部。发动机气缸是将燃料的内能转化为动能的地方。可以简单理解为燃料在气缸内燃烧,产生巨大的压力推动活塞上下运动。力通过连杆传递到曲轴,最终转化为旋转运动。通过传动和驱动轴,将动力传递给驱动轮,从而推动汽车前进。
●?气缸数不能太多
一般汽车多为四缸和六缸发动机。由于发动机的动力主要来源于气缸,气缸数是不是越多越好事实上,随着气缸数的增加,发动机零部件也相应增加,发动机的结构也会更加复杂,这也会降低发动机的可靠性发动机,也会增加发动机制造和后续维护的成本。因此,汽车发动机的气缸数是根据发动机的用途和性能要求综合权衡后做出的选择。V12发动机、W12发动机和W16发动机仅用于少数高性能汽车。
●?V型发动机结构
其实对V型发动机的简单理解就是将相邻的气缸按一定角度组合起来。侧面看是V字型,是V型发动机。与直列式发动机相比,V型发动机的高度和长度都降低了,可以使发动机罩更低,满足空气动力学要求。V型发动机的气缸呈一定角度对置,可以抵消部分振动,但缺点是必须使用两个气缸盖,结构比较复杂。虽然发动机的高度降低了,但其宽度也相应地增加了,这样空间固定的发动机舱就不容易安装其他设备。
●?W型发动机结构
将V型发动机两侧的气缸以小角度错开,就是W型发动机。与V型发动机相比,W型发动机的优点是曲轴可以更短,重量可以更轻,但宽度相应增加,发动机舱会更充分。缺点是W型发动机的结构分为两部分,结构比较复杂,运行时会产生很大的振动,所以只用在少数车上。
汽车发动机结构图片(汽车发动机总体构造有哪些) ♂
汽车发动机结构图片(汽车发动机总体构造有哪些)- 汽车发动机总体构造有哪些
- 急求汽车发动机的组成以及各部分的结构图
- 汽车的发动机内部构造是什么
- 发动机主要组成部分图片名称和作用
- 目前汽车主流发动机气缸排列形式有哪些
- 汽车发动机的缸体结构那么复杂,究竟是怎么做出来的
- 汽车发动机结构名称及作用图
就其总体功能而言,汽车发动机基本上都是由两大机构:曲柄连杆机构、配气机构;五大系统:起动系统、燃料供给系统、点火系统、润滑系统、冷却系统组成。
简单介绍各机构、系统的组成与功用:
1、曲柄连杆机构
主要由气缸体与曲轴箱组、活塞连杆组、曲轴飞轮组三部分组成。
功用:将燃料燃烧时产生的热能转变成活塞往复运动的机械能,再通过连杆将活塞的往复运动转变为曲轴的旋转运动而对外输出动力。
2、配气机构
主要由进气门、排气门、挺柱、摇臂、凸轮轴正时齿轮等组成。
功用:使可燃混合气及时充入气缸,并及时从气缸排出废气。
3、起动系统
主要由起动机及其附属装置组成。
功用:使静止的发动机起动并转入正常运转状态。
4、燃料供给系统
主要由汽油箱、汽油泵、汽油滤器器、空气滤清器、进气管、排气管、排气消声器等组成。
功用:把汽油和空气混合成合适的可燃混合气输入气缸,以供燃烧,并将燃烧生成的废气排出发动机体外。
5、点火系统
主要由蓄电池、发电机、断电器(与分电装置等组合成分电器)、点火线圈、火花塞等组成。
功用:保证在规定时刻及时点燃气缸中被压缩的混合气。
6、润滑系统
主要由机油泵、集滤器、限压阀、润滑油道、机油粗滤器、机油细滤器、机油冷却器等组成。
功用:将润滑油以一定压力送到相对运动的零件表面,以减少它们之间的摩擦阻力,减轻机件之间的磨损,同时起到冷却摩擦零件、清洗摩擦零件表面的作用。
7、冷却系统
主要由水泵、散热器、风扇、分水管、气缸体放水阀、气缸体和气缸盖内铸出的空腔(水套)等组成。
功用:将受热机件的热量散到大气中,以保证发动机的正常工作。
汽车要在道路上行驶必须先有动力,而动力的来源就是发动机。发动机性能的好坏是决定汽车行驶性能的最大因素。目前汽车使用的发动机均属于内燃机,发动机的功能就是将燃料的化学能转成热能再转成机械能,而机械能也就是一般所谓的动力。发动机在将燃料转成动力的过程中会经过一定的工作程序,而且此程序是周而复始连续不断的循环。 ● 发动机的基本构造——缸径、冲程、排气量与压缩比 发动机是由凸轮轴、气门、气缸盖、气缸体、活塞、活塞连杆、曲轴、飞轮、油底壳等主要组件,以及进气、排气、点火、润滑、冷却等系统所组合而成。以下将分别介绍在汽车型录的“发动机规格表”中常见的缸径、冲程、排气量、压缩比、SOHC、DOHC等名词。 缸径: 气缸体上用来让活塞做运动的圆筒空间的直径。 冲程: 活塞在气缸体内运动时的起点与终点的距离。一般将活塞在最靠近气门时的位置定为起点,此点称为“上止点”;而将远离气门时的位置称为“下止点”。 排气量: 将气缸的面积乘以冲程,即可得到气缸排气量。将气缸排气量乘以气缸数量,即可得到发动机排气量。以丰田花冠1.8L车型的直列4气缸发动机为例: 缸径:79.0mm,冲程:91.5mm,气缸排气量:448.5cc; 发动机排气量=气缸排气量×气缸数量=448.5cc×4=1794cc。 压缩比: 最大气缸容积与最小气缸容积的比率。最小气缸容积即活塞在上止点位置时的气缸容积,也称为燃烧室容积。最大气缸容积即燃烧室容积加上气缸排气量,也就是活塞位于下止点位置时的气缸容积。 丰田花冠1.8L发动机的压缩比为10:1,其计算方式如下: 气缸排气量:448.5cc,燃烧室容积:49.83cc; 压缩比=(49.84+448.5):49.84=9.998:1≈10:1。● 发动机的基本构造——凸轮轴与气门 凸轮轴: 在一支轴上有许多宛如“蛋形”凸轮,其被安装在气缸盖的顶部,用来驱动进气气门和排气气门做开启与关闭的动作。 在凸轮轴的一端会安装一个传动轮,以链条或皮带与位于曲轴上的传动轮连接。在以链条传动的系统中此传动轮为一齿轮;在以皮带传动的系统中此传动轮为一具齿槽的皮带轮。 一般双顶置凸轮轴(DOHC)设计的发动机,其进气和排气的凸轮轴均挂上一个传动轮,由链条或皮带直接带动凸轮轴转动。有些发动机为了减少气门夹角,而将凸轮轴的传动方式改变成以链条传动方式带动进气或排气的凸轮轴,再藉由安装在进气和排气的凸轮轴上的齿轮以链条带动另外一支凸轮轴。 丰田独特的“TWIN CAM”设计方式,则是以链条或皮带去带动位于进气或排气的凸轮轴上的传动轮,之后再以安装在进气和排气的凸轮轴上的无间隙齿轮机构带动另外一支凸轮轴。 气门: 控制空气进出气缸的阀门。让空气或混合气进入的称为“进气气门”。让燃烧后的废气排出的称为“排气气门”。 ● 发动机基本构造─SOHC单凸轮轴发动机 发动机的凸轮轴装置在气缸盖顶部,而且只有一支凸轮轴,一般简称为OHC (顶置凸轮轴,Over Head Cam Shaft)。凸轮轴透过摇臂驱动气门做开启和关闭的动作。 在每气缸二气门的发动机上还有一种无摇臂的设计方式,此方式是将进气门和排气门排在一直在线,让凸轮轴直接驱动气门做开闭的动作。有VVL装置的发动机则会透过一组摇臂机构去驱动气门做开闭的动作。● 发动机基本构造——DOHC双凸轮轴发动机 此种发动机在气缸盖顶部装置二支凸轮轴,由凸轮轴直接驱动气门做开启和关闭的动作。仅有少数发动机是设计成透过摇臂去驱动气门做开闭的动作。有VVL装置的发动机则会透过一组摇臂机构去驱动气门做开闭的动作。 DOHC较SOHC的设计来得优秀的主要原因有二:一是凸轮轴驱动气门的直接性,使气门有较佳的开闭过程,而提升气缸在进气和排气时的效率;另一则是火花塞可以装置在气缸盖中间的区域,使混合气在气缸内部可以获得更好、更平均的燃烧。● 直列发动机 VS V型发动机 ◆ 直列发动机 一如其名,直列发动机气缸排列成一条直线。 发动机的所有气缸均排列在同一平面上,形成一直列的情形,称为直列发动机。以直列四气缸发动机为例,常见的标示方式有二种,一是取与排列外型相似的I做标示,就标示为“I4”。另外一种则是以英文Line做开头,而标示为“Line 4”或“L6”以代表直列4气缸或是直列6气缸发动机之意。 ◆ V型发动机 气缸数增加,采用V型排列的发动机可以有效减少发动机提及,增加车内空间。 发动机的气缸分别排列在二个平面上,此二个平面相互产生一个夹角。气缸呈V型排列的发动机会因气缸数量的不同,而有60、90、120度三种常见的角度。发动机气缸排列在两个相交的V型平面上,则称为“W型发动机”,而夹角为180度的发动机则另外称为“水平对置式发动机”。● 可变气门正时&可变长度进气岐管 ◆ 可变气门正时: 曲轴经由齿状的传动装置带动凸轮轴转动,使气门在做开启与关闭的动作时会与曲轴的转动角度成一定的对应关系。 由于气体流动的性质会随着发动机运转速度的快慢而改变,如何使气缸在不同的转速下都能够获得良好的进气效率?为此必须改变气门在开启与关闭时间。经由安装在凸轮轴前端的油压装置使凸轮轴可以另外做一小角度转动,以使进气门在转速升高时得以提早开启。 ◆ 可变长度进气岐管: 为了使发动机在高、低转速时能够维持平稳的进气效率,如何制造出长度适合的进气管路就成了一件重要的课题。藉由在进气管路中设置阀门来使进气管路改变成长、短二种路径。以满足发动机在高转速运转时需要流速快、动能大的气流;并且在低转速时供给发动机适当流量的空气。这样就能够使发动机在高转速时获得较大的马力,而在较低转速时有较佳的油耗表现。
发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异,发动机的总体结构图如下所示。
汽油发动机
柴油发动机
汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。柴油机通常由两大机构和四大系统组成(无点火系)。
构造:
1.曲柄连杆机构。曲柄连杆机构是由气缸体、气缸盖、活塞、连杆、曲轴和飞轮等组成。这是发动机产生动力,并将活塞的直线往复运动转变为曲轴旋转运动而对外输出动力
2.配气机构。配气机构是由进气门、排气门、气门弹簧、挺杆、凸轮轴和正时齿轮等组成。其作用是将新鲜气体及时充入气缸,并将燃烧产生的废气及时排出气缸。
3.燃料供给系。由于使用的燃料不同,可分为汽油机燃料供给系和柴油机燃料供给系。
汽油燃料供给系又分化油器式和燃油直接喷射式两种,通常所用的化油器式燃料供给系由燃油箱、汽油泵、汽油滤清器、化油器、空气滤清器、进排气歧管和排气消声器等组成,其作用是向气缸内供给已配好的可燃混合气,并控制进入气缸内可燃混合气数量,以调节发动机输出的功率和转速,最后,将燃烧后废气排出气缸。
发动机(Engine)是一种能够把其它形式的能转化为机械能的机器,包括如内燃机(汽油发动机等)、外燃机(斯特林发动机、蒸汽机等)、电动机等。如内燃机通常是把化学能转化为机械能。发动机既适用于动力发生装置,也可指包括动力装置的整个机器(如:汽油发动机、航空发动机)。发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。
机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、汽缸套、气缸盖和气缸垫等零件组成。
气缸体
水冷发动机的气缸体和上曲轴箱常铸成一体,
称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。
气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。
1、一般式气缸体:其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差
2、龙门式气缸体:其特点是油底壳安装平面低于曲轴的旋转中心。
它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。
3、隧道式气缸体:这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。
为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。
曲轴箱
气缸体下部用来安装曲轴的部位称为曲轴箱,曲轴箱分上曲轴箱和下曲轴箱。上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润滑油,并封闭上曲轴箱,故又称为油底壳图。油底壳受力很小,一般采用薄钢板冲压而成,其形状取决于发动机的总体布置和机油的容量。油底壳内装有稳油挡板,以防止汽车颠动时油面波动过大。油底壳底部还装有放油螺塞,通常放油螺塞上装有永久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损。在上下曲轴箱接合面之间装有衬垫,防止润滑油泄漏。
气缸盖
气缸盖安装在气缸体的上面,从上部密封气缸并构成燃烧室。
按照进气系统分类
它经常与高温高压燃气相接触,因此承受很大的热负荷和机械负荷。水冷发动机的气缸盖内部制有冷却水套,缸盖下端面的冷却水孔与缸体的冷却水孔相通。利用循环水来冷却燃烧室等高温部分。
缸盖上还装有进、排气门座,气门导管孔,用于安装进、排气门,还有进气通道和排气通道等。汽油机的气缸盖上加工有安装火花塞的孔,而柴油机的气缸盖上加工有安装喷油器的孔。顶置凸轮轴式发动机的气缸盖上还加工有凸轮轴轴承孔,用以安装凸轮轴。
气缸盖一般采用灰铸铁或合金铸铁铸成,铝合金的导热性好,有利于提高压缩比,所以近年来铝合金气缸盖被采用得越来越多。
气缸盖是燃烧室的组成部分,燃烧室的形状对发动机的工作影响很大,由于汽油机和柴油机的燃烧方式不同,其气缸盖上组成燃烧室的部分差别较大。汽油机的燃烧室主要在气缸盖上,而柴油机的燃烧室主要在活塞顶部的凹坑。这里只介绍汽油机的燃烧室,而柴油机的燃烧室放在柴油供给系里介绍。
汽油机燃烧室常见的三种形式。
1)半球形燃烧室
半球形燃烧室结构紧凑,火花塞布置在燃烧室中央,火焰行程短,
按照气缸数目分类
故燃烧速率高,散热少,热效率高。这种燃烧室结构上也允许气门双行排列,进气口直径较大,故充气效率较高,虽然使配气机构变得较复杂,但有利于排气净化,在轿车发动机上被广泛地应用。
2)楔形燃烧室
楔形燃烧室结构简单、紧凑,散热面积小,热损失也小,能保证混合气在压缩行程中形成良好的涡流运动,有利于提高混合气的混合质量,进气阻力小,提高了充气效率。气门排成一列,使配气机构简单,但火花塞置于楔形燃烧室高处,火焰传播距离长些,切诺基轿车发动机采用这种形式的燃烧室。
3)盆形燃烧室
盆形燃烧室,气缸盖工艺性好,制造成本低,但因气门直径易受限制,进、排气效果要比半球形燃烧室差。捷达轿车发动机、奥迪轿车发动机采用盆形燃烧室。
气缸垫
气缸垫装在气缸盖和气缸体之间,其功用是保证气缸盖与气缸体接触面的密封,防止漏气,漏水和漏油。
气缸垫的材料要有一定的弹性,能补偿结合面的不平度,以确保密封,同时要有好的耐热性和耐压性,在高温高压下不烧损、不变形。目前应用较多的是铜皮——棉结构的气缸垫,由于铜皮——棉气缸垫翻边处有三层铜皮,压紧时较之石棉不易变形。有的发动机还采用在石棉中心用编织的纲丝网或有孔钢板为骨架,两面用石棉及橡胶粘结剂压成的气缸垫。
安装气缸垫时,首先要检查气缸垫的质量和完好程度,所有气缸垫上的孔要和气缸体上的孔对齐。其次要严格按照说明书上的要求上好气缸盖螺栓。拧紧气缸盖螺栓时,必须由中央对称地向四周扩展的顺序分2~3次进行,最后一次拧紧到规定的力矩。
OHV
发动机的凸轮轴布局形式分为OHC(顶置凸轮轴)和OHV(底置凸轮轴)这两种。目前日本及欧洲的汽车厂家较为青睐顶置凸轮轴这种设计;而底置凸轮轴,通常只有在美国车上才能看见。
OHC(顶置凸轮轴),历经发展现在被分成SOHC(单顶置凸轮轴)和DOHC(双顶置凸轮轴)。单顶置凸轮轴就是依靠一根凸轮轴来控制进、排气门的开合。通常来说单顶是配合两气门发动机的设计,由于两气门发动机在进、排气效率比多气门要低,气门间角布置局限性大。而双顶置凸轮轴就能把这些问题优化,因为一根凸轮轴只控制一组气门(进气门或排气门),因此省略了气门的摇臂,简化了凸轮轴到气门之间的传动机构。总的说来,双顶置凸轮轴由于传动部件少,进、排气效率高,更适合发动机高速时的动力表现。对于追求高功率的日本、欧洲厂商,凸轮轴顶置设计当然是最合适不过了。
底置凸轮轴这种设计的发动机一般都是大排量、低转速、追求大扭矩输出,因为底置凸轮轴,是依靠曲轴带动,然后凸轮与气门摇臂采用一根金属杆来连接,是凸轮顶起连杆,连杆推动摇臂来实现发动机气门的开合,所以过高的转速会使顶杆承压过大以致折断。但是这种用顶杆的设计,也有它的优点,结构简单,可靠性高、发动机重心底、成本低等。因为发动机转速低,强调的是扭矩表现,所以底置凸轮轴设计是足够满足这种需求的。
既然这两种设计偏向不同,前者是最求大功率,后者是追求大扭矩。我们知道汽车提速快、牵引力强靠的是扭矩,而实现最高速度是依靠功率。这里还有一个简单的公式:功率=转速X扭矩。自然吸气时发动机提升功率最简单的办法,就是提高转速,转速越高升功率自然就越高。
爆震传感器
发动机工作时因点火时间提前过度(点火提前角)、发动机的负荷、温度及燃料的质量等影响,会引起发动机爆震。发生爆震时,由于气体燃烧在活塞运动到上止点之前,轻者产生噪音及降低发动机的功率,重者会损坏发动机的机械部件。为了防止爆震的产生,爆震传感器是不可缺少的重要部件,以便通过电子控制系统去调整点火提前时间。
发动机发生爆震时,爆震传感器把发动机的机械振动转变为信号电压送至ECU。ECU根据其内部事先储存的点火及其他数据,及时计算修正点火提前角,去调整点火时间,防止爆震的发生。
铂金火花塞
火花塞分很多种,就材料而言主要有:镍合金、铂金等,这些材料本身都有良好的导电性。火化塞散热形式有冷型火花塞和热型火花塞,火花塞的电极结构主要有单极、双极、四极等。其中出于想提升车辆点火性能方面的考虑,很多人都会想着把自己的单极火花塞改为多极的,或者将自己的镍合金火花塞改为铂金的。
火花塞是由绝缘体和金属壳体两部分组成,金属壳体带有螺纹,拧在发动机气缸上,在金属壳体中有一个中心电极,它通过绝缘材料与金属壳体绝缘,在中心电极上端有接线螺母,连接从分电器的过来的高压线,在金属壳体下面还焊有接地电极,在中心电极与接地电极之间有很小的间隙,脉冲高压电击穿两个电极之间的空气,产生电火花点燃可然混合气做功,由于火花塞工作在高温高压的恶劣环境,对它的材料和制造工艺都要求十分高,但在大多经济型车常采用镍合金火花塞,只有中高档车才会使用铂金火花塞或白金火花塞。
顶置凸轮轴
凸轮轴英文全称为Overhead camshaft,简称OHC。一般发动机的凸轮轴安装位置有下置、中置、顶置三种形式。顶置凸轮轴是将凸轮轴被放置在汽缸盖内,燃烧室之上,直接驱动摇臂、气门,不必通过较长的推杆。与气门数相同的推杆式发动机(即顶置气门结构)相比,顶置凸轮轴结构中需要往复运动的部件要少得多,因此大大简化了配气结构,显著减轻了发动机重量,同时也提高了传动效率、降低了工作噪音。尽管顶置凸轮轴使发动机的结构更加复杂,但是它带来的更出色的引擎综合表现(特别是平顺性的显著提高)以及更紧凑的发动机结构,使发动机制造商很快在产品中广泛应用这一设计。顶置凸轮轴与顶置气门结构的驱动方式并不一定不同。动力可以通过正时皮带、链条甚至齿轮组传递到顶置的凸轮轴上。
分电器
汽油发动机点火系统中按气缸点火次序定时的将高压电流传至各气缸火花塞的部件。在蓄电池点火系统中,通常将分电器和点火器安装在同一轴上,并由凸轮轴驱动,同时它还带有点火提前角调整装置和电容器等。
点火器的断电臂用弹簧片使触点闭合,凸轮轴带动断电凸轮使触点开启,开启间隙约为0.30~0.45毫米。断电凸轮的凸起数与气缸数相同。当触点开启时,分电器的分电臂正好对准相应的侧电极,感应产生的高压电由次级线圈经过分电臂、侧电极、高压导线传至相应气缸的火花塞。
缸线
缸线是传统点火系中必不可少的一部分,是点火线圈把能量传给火花塞的介质。缸线大体上分为四部分。第一是导电材料,第二是绝缘胶皮,第三是点火线圈接头,第四是火花塞接头(还有一些缸线外面再包裹一层隔热材料,防止缸线被烧坏)。
缸线数目与发动机缸数相同。随着科技发展,现在很多车已经没有了缸线,缸线和点火线圈做到了一起,每缸一个点火线圈,体积大大减小,为每缸独立点火提供了更加便利的条件。
活塞
发动机好比是汽车的“心脏”,而活塞则可以理解为是发动机的“中枢”,除了身处恶劣的工作环境外,它还是发动机中最忙碌的一个,不断的进行着从下止点到上止点、从上止点到下止点的往复运动,吸气、压缩、做工、排气等,活塞的内部为掏空设计,更像是一个帽子,两端的圆孔连接活塞销,活塞销连接连杆小头,连杆大头则与曲轴相连,将活塞的往复运动转化为曲轴的圆周运动。
每个活塞的裙体处都有三条皱纹,是为了安装两道气环和一道油环,且气环在上。在装配时,两道气环的开口需要错开,起到密封的作用。油环的作用主要是刮除飞溅到缸壁上的多余润滑油,并将润滑油刮布均匀。目前广泛应用的活塞环材料主要有优质灰铸铁、球墨铸铁、合金铸铁等。
火花塞
通过电极之间的放电现象产生火花,汽油发动机是通过燃料和混合气体的适时燃烧使之产生动力,但是作为燃料的汽油即使处于高温环境下也很难自燃,要想使其适时燃烧有必要用“火”来点燃。这里说的火花点火便是“火花塞”的作用。发动机整体性能的好坏完全是取决于火花塞闪出火花的良否来决定的。我们往往把发动机比作为“汽车的心脏”,但是更能把火花塞比作为“发动机的心脏”。
机滤
机滤全称机油滤清器,它的作用是去除机油中的灰尘、金属颗粒、碳沉淀物和煤烟颗粒等杂质,保护发动机。
在发动机工作过程中,金属磨屑、尘土、高温下被氧化的积碳和胶状沉淀物、水等不断混入润滑油。机油滤清器的作用就是滤掉这些机械杂质和胶质,保待润滑油的清洁,延长其使用期限。机油滤清器应具有滤清能力强,流通阻力小,使用寿命长等性能。
机油冷却器
机油冷却器的作用是冷却润滑油,保持油温在正常工作范围之内。在大功率的强化发动机上,由于热负荷大,必须装用机油冷却器。发动机运转时,由于机油粘度随温度升高而变稀,降低了润滑能力。因此,有些发动机装用了机油冷却器,其作用是降低机油温度,保持润滑油一定的粘度。机油冷却器布置在润滑系循环油路。
节气门
节气门是控制空气进入发动机的一道可控阀门,气体进入进气管后会和汽油混合成可燃混合气,从而燃烧做工。它上接空气滤清器,下接发动机缸体,被称为是汽车发动机的咽喉。节气门有传统拉线式和电子节气门两种,传统发动机节气门操纵机构是通过拉索(软钢丝)或者拉杆,一端连接油门踏板,另一端连接节气门连动板而工作。电子节气门主要通过节气门位置传感器,来根据发动机所需能量,控制节气门的开启角度,从而调节进气量的大小。
节温器
节温器是根据冷却水温度的高低自动调节进入散热器的水量,改变水的循环范围,以调节冷却系的散热能力,保证发动机在合适的温度范围内工作。节温器必须保持良好的技术状态,否则会严重影响发动机的正常工作。如节温器主阀门开启过迟,就会引起发动机过热;主阀门开启过早,则使发动机预热时间延长,使发动机温度过低。
冷却系统
冷却系的主要功用是把受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。冷却系按照冷却介质不同可以分为风冷和水冷,如果把发动机中高温零件的热量直接散入大气而进行冷却的装置称为风冷系。
而把这些热量先传给冷却水,然后再散入大气而进行冷却的装置称为水冷系。由于水冷系冷却均匀,效果好,而且发动机运转噪音小,目前汽车发动机上广泛采用的是水冷系。
喷油嘴
喷油嘴其实就是个简单的电磁阀,当电磁线圈通电时,产生吸力,针阀被吸起,打开喷孔,燃油经针阀头部的轴针与喷孔之间的环形间隙高速喷出,形成雾状,利于燃烧充分。
喷油嘴本身是一个常闭阀,当ECU下达喷油指令时,其电压讯号会使电流流经喷油嘴内的线圈,产生磁场来把阀针吸起,让阀门开启好使油料能自喷油孔喷出。 喷射供油的最大优点就是燃油供给之控制十分精确,让引擎在任何状态下都能有正确的空燃比,不仅让引擎保持运转顺畅,其废气也能合乎环保法规的规范。
平衡轴
平衡轴让发动机工作起来更加平稳、顺畅。平衡轴技术是一项结构简单并且非常实用发动机技术,它可以有效减缓整车振动,提高驾驶的舒适性。
当发动机处在工作状态时,活塞的运动速度非常快,而且速度很不均匀。当活塞位于上下止点位置时,其速度为零,但在上下止点中间位置的速度则达到最高。由于活塞在气缸内做反复的高速直线运动,因此必然会在活塞、活塞销和连杆上产生较大的惯性力。虽然连杆上的配重可以有效地平衡这些惯性力,但却只有一部分运动质量参与直线运动,另一部分参与了旋转。因而除了上下止点位置外,其它惯性力并不能完全达到平衡状态,此时的发动机便产生了振动。
起动系统
为了使静止的发动机进入工作状态,必须先用外力转动发动机曲轴,使活塞开始上下运动,气缸内吸入可燃混合气,然后依次进入后续的工作循环。而依靠的这个外力系统就是启动系统。
目前几乎所有的汽车发动机都采用电力起动机启动。当电动机轴上的驱动齿轮与发动机飞轮周缘上的环齿啮合时,电动机旋转时产生的电磁转矩通过飞轮传递给发动机的曲轴,使发动机起动。电力起动机简称起动机。它以蓄电池为电源,结构简单、操作方便、起动迅速可靠。
气门
气门(Value)的作用是专门负责向发动机内输入燃料并排出废气,传统发动机每个汽缸只有一个进气门和一个排气门,这种设计结构相对简单,成本较低,维修方便,低速性能较好,缺点是功率很难提高,尤其是高转速时充气效率低、性能较弱。为了提高进排气效率,现在多采用多气门技术,常见的是每个汽缸布置有4个气门(也有单缸3或5个气门的设计,原理一样,如奥迪A6的发动机),4汽缸一共就是16个气门,在汽车资料上经常看到的“16V”就表示发动机共16个气门。这种多气门结构容易形成紧凑型燃烧室,喷油器布置在中央,这样可以令油气混合气燃烧更迅速、更均匀,各气门的重量和开度适当地减小,使气门开启或闭合的速度更快。
曲柄连杆机构
曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。曲柄连杆机构的主要零件可以分为三组,机体组、活塞连杆组和曲轴飞轮组。
发动机共有进气、压缩、做功、排气四个行程,在做功行程中,曲柄连杆机构将活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,由于惯性作用又把曲轴的旋转运动转变成活塞的往复直线运动。总的来说曲柄连杆机构是发动机借以产生并传递动力的机构。通过它把燃料燃烧后发出的热能转变为机械能。
曲轴
曲轴是发动机的主要旋转机构,
二行程发动机的工作原
它担负着将活塞的上下往复运动转变为自身的圆周运动,且通常我们所说的发动机转速就是曲轴的转速。
曲轴会因机油不清洁以及轴颈的受力不均匀造成连杆大头与轴颈接触面的磨损,若机油中有颗粒较大的坚硬杂质,也存在划伤轴颈表面的危险。如果磨损严重,很可能会影响活塞上下运动的冲程长短,降低燃烧效率,自然也会较小动力输出。此外曲轴还可能因为润滑不足或机油过稀,造成轴颈表面的烧伤,严重情况下会影响活塞的往复运动。因此一定要用合适黏度的润滑油,且要保证机油的清洁度。
润滑系统
发动机工作时,各运动零件均以一定的力作用在另一个零件上,
发动机
并且发生高速的相对运动,有了相对运动,零件表面必然要产生摩擦,加速磨损。因此,为了减轻磨损,减小摩擦阻力,延长使用寿命,发动机上都必须有润滑系统。
润滑系统的功用就是在发动机工作时连续不断地把数量足够、温度适当的洁净机油输送到全部传动件的摩擦表面,并在摩擦表面之间形成油膜,实现液体摩擦,从而减小摩擦阻力、降低功率消耗、减轻机件磨损,以达到提高发动机工作可靠性和耐久性的目的。润滑方式有压力润滑、飞溅润滑、润滑脂润滑三种方式。
中冷器
中冷器一般只有在安装了涡轮增压的车才能看到。因为中冷器实际上是涡轮增压的配套件,其作用在于提高发动机的换气效率。 对于增压发动机来说,中冷器是增压系统的重要组成部件。无论是机械增压发动机还是涡轮增压发动机,都需要在增压器与发动机进气歧管之间安装中冷器,由于这个散热器位于发动机和增压器之间,所以又称作中间冷却器,简称中冷器。
汽车发动机气缸排列形式的分类:
1.直列(L型)的基本介绍
顾名思义,是所有气缸排成一列进行上下的往复运动,一般6缸以下的发动机多采用这种方式,它的特点是工艺简单,制造成本低便于维修。是经济型轿车的首选,但是发动机运作时的震动较大。
请点击输入图片描述
2.H型的基本介绍
两列气缸以水平方式对向连接,所有活塞都做水平的往复运动,特点是发动机的平衡性比较好,而且重心相对比较低,有利于汽车的稳定性。比如斯巴鲁参加世界拉力锦标赛的赛车以及著名的保时捷跑车都是采用水平对置发动机。但是因为所有气缸都是水平放置的,上半部分的润滑就成了一个难题,相对于其它形式的发动机来说需要有更加复杂精密的润滑系统,无形之中就提高了制造成本。H型水平对置(可视为180度夹角)
请点击输入图片描述
3.V型的基本介绍
所有气缸分成两排,相当于两个直列气缸发动机以一定的角度连接起来,是比较理想的发动机形式,特点是运转平稳,震动及噪音都要小于直列发动机。而两列气缸之间的角度的大小对发动机的平顺性影响比较大,90°是最理想的,但是由于厂家对于发动机有其他方面的考虑,也会有60°、110°等多种形式,一般角度越小,发动机的宽度越小,方便于在狭小的机舱内安置,但同时高度要相应的增加。而角度增大的话发动机的重心高度比较低,有利于车身在弯道中的稳定性。V型发动机的构造相对复杂,制造成本及维修费用都比较高)
请点击输入图片描述
4.W型的基本介绍
将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。
W型发动机是大众公司首创的,但是它并不是四排气缸以W型排列的,而是通过复杂的空间结构将两台夹角很小的V型发动机的四列气缸连接在同一个曲轴上。这样可以大大缩小发动机的体积,比如大众的12缸W型发动机的体积仅仅相当于一般V8或者体积稍微大一点的V6发动机,同时运转十分宁静平稳。但是W型发动机构造的复杂程度另人乍舌,极高的制造成本使它只能用在一些大型豪华轿车上,比如大众的辉腾6.0以及旗下奥迪品牌的旗舰A8L6.0都是用的W12发动机。
请点击输入图片描述
5.转子发动机的基本介绍
目前在商品汽车上普遍使用往复式活塞发动机。还有一种知名度很高,但应用很少的发动机,这就是三角活塞旋转式发动机,也就是转子发动机。相比常见的L型、V型气缸布局形式,可能很多朋友会对三角转子发动机感到陌生。转子发动机又称为米勒循环发动机,由德国人菲加士?汪克尔发明,之后这项技术由马自达公司收购。我们都知道:传统的气缸往复运动式发动机,工作时活塞在气缸里做往复直线运动,而为了把活塞的直线运动转化为旋转运动,必须使用曲柄连杆机构。转子发动机则不同,它直接将可燃气的燃烧膨胀力转化为驱动扭矩。与往复式发动机相比,转子发动机取消了无用的直线运动,因而同样功率的转子发动机尺寸较小,重量较轻,而且振动和噪声较低,具有较大优势。
首先来看看最常见的一个发动机参数———发动机排量。发动机排量是发动机各汽缸工作容积的总和,一般用升(L)表示。而汽缸工作容积则是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是非常重要的发动机参数,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。一般来说,排量越大,发动机输出功率越大。
了解了排量,我们再来看发动机的其他常见参数。很多初级车友都反映经常在汽车资料的发动机一栏中见到“L4”、“V6”、“V8”、“W12”等字样,想弄明白究竟是什么意思。这些都表示发动机汽缸的排列形式和缸数。汽车发动机常用缸数有3缸、4缸、6缸、8缸、10缸、12缸等。
一般说来,排量1升以下的发动机常用3缸,例如0.8升的奥拓和福莱尔轿车。排量1升至2.5升一般为4缸发动机,常见的经济型轿车以及中档轿车发动机基本都是4缸。3升左右的发动机一般为6缸,比如排量3.0升的君威和新雅阁轿车。
排量4升左右的发动机一般为8缸,比如排量4.7升的北京吉普的JEEP4700。排量5.5升以上的发动机一般用12缸发动机,例如排量6升的宝马760Li就采用V12发动机。在同等缸径下,通常缸数越多排量越大,功率也就越高;而在发动机排量相同的情况下,缸数越多,缸径越小,发动机转速就可以提高,从而获得较大的提升功率。
以上是有关发动机缸数的知识,下面我们接着了解“汽缸排列形式”这个重要参数。一般5缸以下发动机的汽缸多采用直列方式排列,常见的多数中低档轿车都是L4发动机,即直列4缸。另外,也有少数6缸发动机采用直列方式排列。
直列发动机的汽缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点则是功率较低。一般1升以下的汽油机多采用直列3缸,1至2.5升的汽油机多采用直列4缸,有的四轮驱动汽车采用直列6缸,因为其宽度小,可以在旁边布置增压器等设施,例如北京吉普的JEEP4000就采用直列6缸发动机。
另据专业人士介绍,直列6缸发动机的动平衡较好,振动相对较小,所以也为一些中、高级轿车所采用。6到12缸的发动机一般采用V形排列,其中V10发动机主要装在赛车上。V形发动机长度和高度尺寸小,布置起来非常方便。一般认为V形发动机是比较高级的发动机,因而成为轿车级别的标志之一。
V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用,比如上面提到的宝马760Li。而大众公司近来还新开发出了W型发动机,有W8和W12两种,即汽缸分四列错开角度布置,形体紧凑,大众的顶级轿车辉腾就有一款采用了排量6.0升的W12发动机。
机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。
一. 气缸体
水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。
气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。
(1) 一般式气缸体 其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差
(2) 龙门式气缸体 其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。
(3) 隧道式气缸体 这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。
为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。
现代汽车上基本都采用水冷多缸发动机,对于多缸发动机,气缸的排列形式决定了发动机外型尺寸和结构特点,对发动机机体的刚度和强度也有影响,并关系到汽车的总体布置。按照气缸的排列方式不同,气缸体还可以分成单列式,V型和对置式三种。
(1) 直列式
发动机的各个气缸排成一列,一般是垂直布置的。单列式气缸体结构简单,加工容易,但发动机长度和高度较大。一般六缸以下发动机多采用单列式。例如捷达轿车、富康轿车、红旗轿车所使用的发动机均采用这种直列式气缸体。有的汽车为了降低发动机的高度,把发动机倾斜一个角度。
(2) V型
气缸排成两列,左右两列气缸中心线的夹角γ<180°,称为V型发动机,V型发动机与直列发动机相比,缩短了机体长度和高度,增加了气缸体的刚度,减轻了发动机的重量,但加大了发动机的宽度,且形状较复杂,加工困难,一般用于8缸以上的发动机,6缸发动机也有采用这种形式的气缸体。
(3) 对置式
气缸排成两列,左右两列气缸在同一水平面上,即左右两列气缸中心线的夹角 γ=180°,称为对置式。它的特点是高度小,总体布置方便,有利于风冷。这种气缸应用较少。
气缸直接镗在气缸体上叫做整体式气缸,整体式气缸强度和刚度都好,能承受较大的载荷,这种气缸对材料要求高,成本高。如果将气缸制造成单独的圆筒形零件(即气缸套),然后再装到气缸体内。这样,气缸套采用耐磨的优质材料制成,气缸体可用价格较低的一般材料制造,从而降低了制造成本。同时,气缸套可以从气缸体中取出,因而便于修理和更换,并可大大延长气缸体的使用寿命。气缸套有干式气缸套和湿式气缸套两种。
干式气缸套的特点是气缸套装入气缸体后,其外壁不直接与冷却水接触,而和气缸体的壁面直接接触,壁厚较薄,一般为1~3mm。它具有整体式气缸体的优点,强度和刚度都较好,但加工比较复杂,内、外表面都需要进行精加工,拆装不方便,散热不良。
湿式气缸套的特点是气缸套装入气缸体后,其外壁直接与冷却水接触,气缸套仅在上、下各有一圆环地带和气缸体接触,壁厚一般为5~9mm。它散热良好,冷却均匀,加工容易,通常只需要精加工内表面,而与水接触的外表面不需要加工,拆装方便,但缺点是强度、刚度都不如干式气缸套好,而且容易产生漏水现象。应该采取一些防漏措施。
气缸体下部用来安装曲轴的部位称为曲轴箱,曲轴箱分上曲轴箱和下曲轴箱。上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润滑油,并封闭上曲轴箱,故又称为油底壳图(图2-6)。油底壳受力很小,一般采用薄钢板冲压而成,其形状取决于发动机的总体布置和机油的容量。油底壳内装有稳油挡板,以防止汽车颠动时油面波动过大。油底壳底部还装有放油螺塞,通常放油螺塞上装有永久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损。在上下曲轴箱接合面之间装有衬垫,防止润滑油泄漏。
三. 气缸盖
气缸盖安装在气缸体的上面,从上部密封气缸并构成燃烧室。它经常与高温高压燃气相接触,因此承受很大的热负荷和机械负荷。水冷发动机的气缸盖内部制有冷却水套,缸盖下端面的冷却水孔与缸体的冷却水孔相通。利用循环水来冷却燃烧室等高温部分。
缸盖上还装有进、排气门座,气门导管孔,用于安装进、排气门,还有进气通道和排气通道等。汽油机的气缸盖上加工有安装火花塞的孔,而柴油机的气缸盖上加工有安装喷油器的孔。顶置凸轮轴式发动机的气缸盖上还加工有凸轮轴轴承孔,用以安装凸轮轴。
气缸盖一般采用灰铸铁或合金铸铁铸成,铝合金的导热性好,有利于提高压缩比,所以近年来铝合金气缸盖被采用得越来越多。
气缸盖是燃烧室的组成部分,燃烧室的形状对发动机的工作影响很大,由于汽油机和柴油机的燃烧方式不同,其气缸盖上组成燃烧室的部分差别较大。汽油机的燃烧室主要在气缸盖上,而柴油机的燃烧室主要在活塞顶部的凹坑。这里只介绍汽油机的燃烧室,而柴油机的燃烧室放在柴油供给系里介绍。
汽油机燃烧室常见的三种形式。
(1) 半球形燃烧室
半球形燃烧室结构紧凑,火花塞布置在燃烧室中央,火焰行程短,故燃烧速率高,散热少,热效率高。这种燃烧室结构上也允许气门双行排列,进气口直径较大,故充气效率较高,虽然使配气机构变得较复杂,但有利于排气净化,在轿车发动机上被广泛地应用。
(2) 楔形燃烧室
楔形燃烧室结构简单、紧凑,散热面积小,热损失也小,能保证混合气在压缩行程中形成良好的涡流运动,有利于提高混合气的混合质量,进气阻力小,提高了充气效率。气门排成一列,使配气机构简单,但火花塞置于楔形燃烧室高处,火焰传播距离长些,切诺基轿车发动机采用这种形式的燃烧室。
(3) 盆形燃烧室
盆形燃烧室,气缸盖工艺性好,制造成本低,但因气门直径易受限制,进、排气效果要比半球形燃烧室差。捷达轿车发动机、奥迪轿车发动机采用盆形燃烧室。
四. 气缸垫
气缸垫装在气缸盖和气缸体之间,其功用是保证气缸盖与气缸体接触面的密封,防止漏气,漏水和漏油。
气缸垫的材料要有一定的弹性,能补偿结合面的不平度,以确保密封,同时要有好的耐热性和耐压性,在高温高压下不烧损、不变形。目前应用较多的是铜皮——棉结构的气缸垫,由于铜皮——棉气缸垫翻边处有三层铜皮,压紧时较之石棉不易变形。有的发动机还采用在石棉中心用编织的纲丝网或有孔钢板为骨架,两面用石棉及橡胶粘结剂压成的气缸垫。
安装气缸垫时,首先要检查气缸垫的质量和完好程度,所有气缸垫上的孔要和气缸体上的孔对齐。其次要严格按照说明书上的要求上好气缸盖螺栓。拧紧气缸盖螺栓时,必须由中央对称地向四周扩展的顺序分2~3次进行,最后一次拧紧到规定的力矩。
四冲程发动机的工作过程: 四冲程发动机是活塞往复四个行程完成一个工作循环,包括进气、压缩、作功、排气四个过程。四行程柴油机和汽油机一样经历进气、压缩、作功、排气的过程。但与汽油机的不同之处在于:汽油机是点燃,柴油机是压燃。
冷却系:一般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成。汽车发动机采用两种冷却方式,即空气冷却和水冷却。一般汽车发动机多采用水冷却。
润滑系:发动机润滑系由机油泵、集滤器、机油滤清器、油道、限压阀、机油表、感压塞及油尺等组成。
燃料系:汽油机燃料系由汽油箱、汽油表、汽油管、汽油滤清器、汽油泵、化油器、空气滤清器、进排气歧管等组成。
汽车发动机结构图解(发动机主要组成部分图片名称和作用) ♂
汽车发动机结构图解(发动机主要组成部分图片名称和作用)- 发动机主要组成部分图片名称和作用
- 汽车内部结构图
- 图解常见汽车发动机结构图
- 汽车发动机构造是啥
- 汽车发动机的基础知识
- 汽车发动机的工作原理 用简单草图描述
- 汽车发动机结构名称及作用图
发动机(Engine)是一种能够把其它形式的能转化为机械能的机器,包括如内燃机(汽油发动机等)、外燃机(斯特林发动机、蒸汽机等)、电动机等。如内燃机通常是把化学能转化为机械能。发动机既适用于动力发生装置,也可指包括动力装置的整个机器(如:汽油发动机、航空发动机)。发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、汽缸套、气缸盖和气缸垫等零件组成。气缸体水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。1、一般式气缸体:其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差2、龙门式气缸体:其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。3、隧道式气缸体:这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。曲轴箱气缸体下部用来安装曲轴的部位称为曲轴箱,曲轴箱分上曲轴箱和下曲轴箱。上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润滑油,并封闭上曲轴箱,故又称为油底壳图。油底壳受力很小,一般采用薄钢板冲压而成,其形状取决于发动机的总体布置和机油的容量。油底壳内装有稳油挡板,以防止汽车颠动时油面波动过大。油底壳底部还装有放油螺塞,通常放油螺塞上装有永久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损。在上下曲轴箱接合面之间装有衬垫,防止润滑油泄漏。气缸盖气缸盖安装在气缸体的上面,从上部密封气缸并构成燃烧室。按照进气系统分类它经常与高温高压燃气相接触,因此承受很大的热负荷和机械负荷。水冷发动机的气缸盖内部制有冷却水套,缸盖下端面的冷却水孔与缸体的冷却水孔相通。利用循环水来冷却燃烧室等高温部分。缸盖上还装有进、排气门座,气门导管孔,用于安装进、排气门,还有进气通道和排气通道等。汽油机的气缸盖上加工有安装火花塞的孔,而柴油机的气缸盖上加工有安装喷油器的孔。顶置凸轮轴式发动机的气缸盖上还加工有凸轮轴轴承孔,用以安装凸轮轴。气缸盖一般采用灰铸铁或合金铸铁铸成,铝合金的导热性好,有利于提高压缩比,所以近年来铝合金气缸盖被采用得越来越多。气缸盖是燃烧室的组成部分,燃烧室的形状对发动机的工作影响很大,由于汽油机和柴油机的燃烧方式不同,其气缸盖上组成燃烧室的部分差别较大。汽油机的燃烧室主要在气缸盖上,而柴油机的燃烧室主要在活塞顶部的凹坑。这里只介绍汽油机的燃烧室,而柴油机的燃烧室放在柴油供给系里介绍。汽油机燃烧室常见的三种形式。1)半球形燃烧室半球形燃烧室结构紧凑,火花塞布置在燃烧室中央,火焰行程短,按照气缸数目分类故燃烧速率高,散热少,热效率高。这种燃烧室结构上也允许气门双行排列,进气口直径较大,故充气效率较高,虽然使配气机构变得较复杂,但有利于排气净化,在轿车发动机上被广泛地应用。2)楔形燃烧室楔形燃烧室结构简单、紧凑,散热面积小,热损失也小,能保证混合气在压缩行程中形成良好的涡流运动,有利于提高混合气的混合质量,进气阻力小,提高了充气效率。气门排成一列,使配气机构简单,但火花塞置于楔形燃烧室高处,火焰传播距离长些,切诺基轿车发动机采用这种形式的燃烧室。3)盆形燃烧室盆形燃烧室,气缸盖工艺性好,制造成本低,但因气门直径易受限制,进、排气效果要比半球形燃烧室差。捷达轿车发动机、奥迪轿车发动机采用盆形燃烧室。气缸垫气缸垫装在气缸盖和气缸体之间,其功用是保证气缸盖与气缸体接触面的密封,防止漏气,漏水和漏油。气缸垫的材料要有一定的弹性,能补偿结合面的不平度,以确保密封,同时要有好的耐热性和耐压性,在高温高压下不烧损、不变形。目前应用较多的是铜皮——棉结构的气缸垫,由于铜皮——棉气缸垫翻边处有三层铜皮,压紧时较之石棉不易变形。有的发动机还采用在石棉中心用编织的纲丝网或有孔钢板为骨架,两面用石棉及橡胶粘结剂压成的气缸垫。安装气缸垫时,首先要检查气缸垫的质量和完好程度,所有气缸垫上的孔要和气缸体上的孔对齐。其次要严格按照说明书上的要求上好气缸盖螺栓。拧紧气缸盖螺栓时,必须由中央对称地向四周扩展的顺序分2~3次进行,最后一次拧紧到规定的力矩。OHV发动机的凸轮轴布局形式分为OHC(顶置凸轮轴)和OHV(底置凸轮轴)这两种。目前日本及欧洲的汽车厂家较为青睐顶置凸轮轴这种设计;而底置凸轮轴,通常只有在美国车上才能看见。OHC(顶置凸轮轴),历经发展现在被分成SOHC(单顶置凸轮轴)和DOHC(双顶置凸轮轴)。单顶置凸轮轴就是依靠一根凸轮轴来控制进、排气门的开合。通常来说单顶是配合两气门发动机的设计,由于两气门发动机在进、排气效率比多气门要低,气门间角布置局限性大。而双顶置凸轮轴就能把这些问题优化,因为一根凸轮轴只控制一组气门(进气门或排气门),因此省略了气门的摇臂,简化了凸轮轴到气门之间的传动机构。总的说来,双顶置凸轮轴由于传动部件少,进、排气效率高,更适合发动机高速时的动力表现。对于追求高功率的日本、欧洲厂商,凸轮轴顶置设计当然是最合适不过了。底置凸轮轴这种设计的发动机一般都是大排量、低转速、追求大扭矩输出,因为底置凸轮轴,是依靠曲轴带动,然后凸轮与气门摇臂采用一根金属杆来连接,是凸轮顶起连杆,连杆推动摇臂来实现发动机气门的开合,所以过高的转速会使顶杆承压过大以致折断。但是这种用顶杆的设计,也有它的优点,结构简单,可靠性高、发动机重心底、成本低等。因为发动机转速低,强调的是扭矩表现,所以底置凸轮轴设计是足够满足这种需求的。既然这两种设计偏向不同,前者是最求大功率,后者是追求大扭矩。我们知道汽车提速快、牵引力强靠的是扭矩,而实现最高速度是依靠功率。这里还有一个简单的公式:功率=转速X扭矩。自然吸气时发动机提升功率最简单的办法,就是提高转速,转速越高升功率自然就越高。爆震传感器发动机工作时因点火时间提前过度(点火提前角)、发动机的负荷、温度及燃料的质量等影响,会引起发动机爆震。发生爆震时,由于气体燃烧在活塞运动到上止点之前,轻者产生噪音及降低发动机的功率,重者会损坏发动机的机械部件。为了防止爆震的产生,爆震传感器是不可缺少的重要部件,以便通过电子控制系统去调整点火提前时间。发动机发生爆震时,爆震传感器把发动机的机械振动转变为信号电压送至ECU。ECU根据其内部事先储存的点火及其他数据,及时计算修正点火提前角,去调整点火时间,防止爆震的发生。铂金火花塞火花塞分很多种,就材料而言主要有:镍合金、铂金等,这些材料本身都有良好的导电性。火化塞散热形式有冷型火花塞和热型火花塞,火花塞的电极结构主要有单极、双极、四极等。其中出于想提升车辆点火性能方面的考虑,很多人都会想着把自己的单极火花塞改为多极的,或者将自己的镍合金火花塞改为铂金的。火花塞是由绝缘体和金属壳体两部分组成,金属壳体带有螺纹,拧在发动机气缸上,在金属壳体中有一个中心电极,它通过绝缘材料与金属壳体绝缘,在中心电极上端有接线螺母,连接从分电器的过来的高压线,在金属壳体下面还焊有接地电极,在中心电极与接地电极之间有很小的间隙,脉冲高压电击穿两个电极之间的空气,产生电火花点燃可然混合气做功,由于火花塞工作在高温高压的恶劣环境,对它的材料和制造工艺都要求十分高,但在大多经济型车常采用镍合金火花塞,只有中高档车才会使用铂金火花塞或白金火花塞。顶置凸轮轴凸轮轴英文全称为Overhead camshaft,简称OHC。一般发动机的凸轮轴安装位置有下置、中置、顶置三种形式。顶置凸轮轴是将凸轮轴被放置在汽缸盖内,燃烧室之上,直接驱动摇臂、气门,不必通过较长的推杆。与气门数相同的推杆式发动机(即顶置气门结构)相比,顶置凸轮轴结构中需要往复运动的部件要少得多,因此大大简化了配气结构,显著减轻了发动机重量,同时也提高了传动效率、降低了工作噪音。尽管顶置凸轮轴使发动机的结构更加复杂,但是它带来的更出色的引擎综合表现(特别是平顺性的显著提高)以及更紧凑的发动机结构,使发动机制造商很快在产品中广泛应用这一设计。顶置凸轮轴与顶置气门结构的驱动方式并不一定不同。动力可以通过正时皮带、链条甚至齿轮组传递到顶置的凸轮轴上。分电器汽油发动机点火系统中按气缸点火次序定时的将高压电流传至各气缸火花塞的部件。在蓄电池点火系统中,通常将分电器和点火器安装在同一轴上,并由凸轮轴驱动,同时它还带有点火提前角调整装置和电容器等。点火器的断电臂用弹簧片使触点闭合,凸轮轴带动断电凸轮使触点开启,开启间隙约为0.30~0.45毫米。断电凸轮的凸起数与气缸数相同。当触点开启时,分电器的分电臂正好对准相应的侧电极,感应产生的高压电由次级线圈经过分电臂、侧电极、高压导线传至相应气缸的火花塞。缸线缸线是传统点火系中必不可少的一部分,是点火线圈把能量传给火花塞的介质。缸线大体上分为四部分。第一是导电材料,第二是绝缘胶皮,第三是点火线圈接头,第四是火花塞接头(还有一些缸线外面再包裹一层隔热材料,防止缸线被烧坏)。缸线数目与发动机缸数相同。随着科技发展,现在很多车已经没有了缸线,缸线和点火线圈做到了一起,每缸一个点火线圈,体积大大减小,为每缸独立点火提供了更加便利的条件。活塞发动机好比是汽车的“心脏”,而活塞则可以理解为是发动机的“中枢”,除了身处恶劣的工作环境外,它还是发动机中最忙碌的一个,不断的进行着从下止点到上止点、从上止点到下止点的往复运动,吸气、压缩、做工、排气等,活塞的内部为掏空设计,更像是一个帽子,两端的圆孔连接活塞销,活塞销连接连杆小头,连杆大头则与曲轴相连,将活塞的往复运动转化为曲轴的圆周运动。每个活塞的裙体处都有三条皱纹,是为了安装两道气环和一道油环,且气环在上。在装配时,两道气环的开口需要错开,起到密封的作用。油环的作用主要是刮除飞溅到缸壁上的多余润滑油,并将润滑油刮布均匀。目前广泛应用的活塞环材料主要有优质灰铸铁、球墨铸铁、合金铸铁等。火花塞通过电极之间的放电现象产生火花,汽油发动机是通过燃料和混合气体的适时燃烧使之产生动力,但是作为燃料的汽油即使处于高温环境下也很难自燃,要想使其适时燃烧有必要用“火”来点燃。这里说的火花点火便是“火花塞”的作用。发动机整体性能的好坏完全是取决于火花塞闪出火花的良否来决定的。我们往往把发动机比作为“汽车的心脏”,但是更能把火花塞比作为“发动机的心脏”。机滤机滤全称机油滤清器,它的作用是去除机油中的灰尘、金属颗粒、碳沉淀物和煤烟颗粒等杂质,保护发动机。在发动机工作过程中,金属磨屑、尘土、高温下被氧化的积碳和胶状沉淀物、水等不断混入润滑油。机油滤清器的作用就是滤掉这些机械杂质和胶质,保待润滑油的清洁,延长其使用期限。机油滤清器应具有滤清能力强,流通阻力小,使用寿命长等性能。机油冷却器机油冷却器的作用是冷却润滑油,保持油温在正常工作范围之内。在大功率的强化发动机上,由于热负荷大,必须装用机油冷却器。发动机运转时,由于机油粘度随温度升高而变稀,降低了润滑能力。因此,有些发动机装用了机油冷却器,其作用是降低机油温度,保持润滑油一定的粘度。机油冷却器布置在润滑系循环油路。节气门节气门是控制空气进入发动机的一道可控阀门,气体进入进气管后会和汽油混合成可燃混合气,从而燃烧做工。它上接空气滤清器,下接发动机缸体,被称为是汽车发动机的咽喉。节气门有传统拉线式和电子节气门两种,传统发动机节气门操纵机构是通过拉索(软钢丝)或者拉杆,一端连接油门踏板,另一端连接节气门连动板而工作。电子节气门主要通过节气门位置传感器,来根据发动机所需能量,控制节气门的开启角度,从而调节进气量的大小。节温器节温器是根据冷却水温度的高低自动调节进入散热器的水量,改变水的循环范围,以调节冷却系的散热能力,保证发动机在合适的温度范围内工作。节温器必须保持良好的技术状态,否则会严重影响发动机的正常工作。如节温器主阀门开启过迟,就会引起发动机过热;主阀门开启过早,则使发动机预热时间延长,使发动机温度过低。冷却系统冷却系的主要功用是把受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。冷却系按照冷却介质不同可以分为风冷和水冷,如果把发动机中高温零件的热量直接散入大气而进行冷却的装置称为风冷系。而把这些热量先传给冷却水,然后再散入大气而进行冷却的装置称为水冷系。由于水冷系冷却均匀,效果好,而且发动机运转噪音小,目前汽车发动机上广泛采用的是水冷系。喷油嘴喷油嘴其实就是个简单的电磁阀,当电磁线圈通电时,产生吸力,针阀被吸起,打开喷孔,燃油经针阀头部的轴针与喷孔之间的环形间隙高速喷出,形成雾状,利于燃烧充分。喷油嘴本身是一个常闭阀,当ECU下达喷油指令时,其电压讯号会使电流流经喷油嘴内的线圈,产生磁场来把阀针吸起,让阀门开启好使油料能自喷油孔喷出。 喷射供油的最大优点就是燃油供给之控制十分精确,让引擎在任何状态下都能有正确的空燃比,不仅让引擎保持运转顺畅,其废气也能合乎环保法规的规范。平衡轴平衡轴让发动机工作起来更加平稳、顺畅。平衡轴技术是一项结构简单并且非常实用发动机技术,它可以有效减缓整车振动,提高驾驶的舒适性。当发动机处在工作状态时,活塞的运动速度非常快,而且速度很不均匀。当活塞位于上下止点位置时,其速度为零,但在上下止点中间位置的速度则达到最高。由于活塞在气缸内做反复的高速直线运动,因此必然会在活塞、活塞销和连杆上产生较大的惯性力。虽然连杆上的配重可以有效地平衡这些惯性力,但却只有一部分运动质量参与直线运动,另一部分参与了旋转。因而除了上下止点位置外,其它惯性力并不能完全达到平衡状态,此时的发动机便产生了振动。起动系统为了使静止的发动机进入工作状态,必须先用外力转动发动机曲轴,使活塞开始上下运动,气缸内吸入可燃混合气,然后依次进入后续的工作循环。而依靠的这个外力系统就是启动系统。目前几乎所有的汽车发动机都采用电力起动机启动。当电动机轴上的驱动齿轮与发动机飞轮周缘上的环齿啮合时,电动机旋转时产生的电磁转矩通过飞轮传递给发动机的曲轴,使发动机起动。电力起动机简称起动机。它以蓄电池为电源,结构简单、操作方便、起动迅速可靠。气门气门(Value)的作用是专门负责向发动机内输入燃料并排出废气,传统发动机每个汽缸只有一个进气门和一个排气门,这种设计结构相对简单,成本较低,维修方便,低速性能较好,缺点是功率很难提高,尤其是高转速时充气效率低、性能较弱。为了提高进排气效率,现在多采用多气门技术,常见的是每个汽缸布置有4个气门(也有单缸3或5个气门的设计,原理一样,如奥迪A6的发动机),4汽缸一共就是16个气门,在汽车资料上经常看到的“16V”就表示发动机共16个气门。这种多气门结构容易形成紧凑型燃烧室,喷油器布置在中央,这样可以令油气混合气燃烧更迅速、更均匀,各气门的重量和开度适当地减小,使气门开启或闭合的速度更快。曲柄连杆机构曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。曲柄连杆机构的主要零件可以分为三组,机体组、活塞连杆组和曲轴飞轮组。发动机共有进气、压缩、做功、排气四个行程,在做功行程中,曲柄连杆机构将活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,由于惯性作用又把曲轴的旋转运动转变成活塞的往复直线运动。总的来说曲柄连杆机构是发动机借以产生并传递动力的机构。通过它把燃料燃烧后发出的热能转变为机械能。曲轴曲轴是发动机的主要旋转机构,二行程发动机的工作原它担负着将活塞的上下往复运动转变为自身的圆周运动,且通常我们所说的发动机转速就是曲轴的转速。曲轴会因机油不清洁以及轴颈的受力不均匀造成连杆大头与轴颈接触面的磨损,若机油中有颗粒较大的坚硬杂质,也存在划伤轴颈表面的危险。如果磨损严重,很可能会影响活塞上下运动的冲程长短,降低燃烧效率,自然也会较小动力输出。此外曲轴还可能因为润滑不足或机油过稀,造成轴颈表面的烧伤,严重情况下会影响活塞的往复运动。因此一定要用合适黏度的润滑油,且要保证机油的清洁度。润滑系统发动机工作时,各运动零件均以一定的力作用在另一个零件上,发动机并且发生高速的相对运动,有了相对运动,零件表面必然要产生摩擦,加速磨损。因此,为了减轻磨损,减小摩擦阻力,延长使用寿命,发动机上都必须有润滑系统。润滑系统的功用就是在发动机工作时连续不断地把数量足够、温度适当的洁净机油输送到全部传动件的摩擦表面,并在摩擦表面之间形成油膜,实现液体摩擦,从而减小摩擦阻力、降低功率消耗、减轻机件磨损,以达到提高发动机工作可靠性和耐久性的目的。润滑方式有压力润滑、飞溅润滑、润滑脂润滑三种方式。中冷器中冷器一般只有在安装了涡轮增压的车才能看到。因为中冷器实际上是涡轮增压的配套件,其作用在于提高发动机的换气效率。 对于增压发动机来说,中冷器是增压系统的重要组成部件。无论是机械增压发动机还是涡轮增压发动机,都需要在增压器与发动机进气歧管之间安装中冷器,由于这个散热器位于发动机和增压器之间,所以又称作中间冷却器,简称中冷器。
汽车的内部结构一般由发动机、底盘、车身和电气设备等四个基本部分组成。
汽车发动机:是汽车的动力装置。主要由机体,曲柄连杆机构,配气机构,冷却系,润滑系,燃料系和点火系(柴油机没有点火系)等组成。
汽车底盘: 底盘主要是由离合器、变速器、万向节、传动轴和驱动桥等组成。 离合器:其作用是使发动机的动力与传动装置平稳地接合或暂时地分离,用于驾驶员进行汽车的起步、停车、换档等操作。
电气设备: 汽车电气设备主要由蓄电池、发电机、调节器、起动机、点火系、仪表、照明装置、音响装置、雨刷器等部分组成。?
我国国家最新标准《汽车和挂车类型的术语和定义》(GB/T 3730.1—2001)中对汽车有如下定义:由动力驱动,具有4个或4个以上车轮的非轨道承载的车辆,主要用于:载运人员和(或)货物;牵引载运人员和(或)货物的车辆;特殊用途。
发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。(1) 曲柄连杆机构曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。(2) 配气机构配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 (3) 燃料供给系统汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。(4) 润滑系统润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。(5) 冷却系统冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 (6) 点火系统在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。(7) 起动系统要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。
发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。(1) 曲柄连杆机构曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。(2) 配气机构配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 (3) 燃料供给系统汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。(4) 润滑系统润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。(5) 冷却系统冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 (6) 点火系统在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。(7) 起动系统要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。
发动机是汽车的“心脏”,下面将以活塞往复式发动机为例进行详细说明:
发动机的结构图解,组成发动机的零部件。发动机由各式各样的零部件组成,如下图所示:
往复式发动机的工作原理是,向气缸中喷入燃油和空气的混合气体并点火,混合气体燃烧时体积膨胀,产生的能量推动活塞移动,再通过曲轴将活塞的上下移动转变为旋转运动,使发动机运转。几乎所有汽车都采用该类发动机。
发动机性能上的飞速发展比其机械零部件的进化更为显著。近年来,发动机大多采用电子控制单元(ECU,Electronic Control Unit)来控制燃油和空气的混合方法、混合气体喷入气缸的时间及喷入量,因此发动机的性能比之前有了很大的提高。
气缸:气缸指的是气缸体内的圆筒形部件,燃油和空气的混合气体是在气缸中进行燃烧的。因为混合气体在气缸内燃烧会导致压力和温度迅速上升,所以气缸需要有足够的强度来承受高压和高温。活塞要在气缸内上下移动,因此气缸是圆筒形的。混合气体燃烧时产生的热量和活塞移动时产生的热量都会转移到气缸体内。
气缸盖:气缸盖安装在气缸体上方,其上装有进气门、排气门、控制气门开闭的凸轮以及凸轮轴。
发动机的工作原理:混合气体燃烧所爆发出的能量使活塞上下移动,从而带动曲轴等部件进行旋转运动。
上下移动转换为旋转运动:空气由进气歧管供给,燃油从喷油器中喷出,将空气和燃油充分混合后通过进气门输送至气缸。混合气体在气缸内经火花塞点燃后燃烧,气体的体积急剧膨胀,压力和温度迅速升高。在气体压力的作用下,活塞迅速向下移动,随后因废气的排出又向上移动。与活塞相连接的连杆同时也固定在曲轴上,通过连杆可以将活塞的上下移动转换为曲轴的旋转运动。活塞的上下移动分为进气、压缩、做功、排气四个冲程,拥有这四个冲程的发动机就称为四冲程发动机。
活塞:活塞要承受气缸内混合气体燃烧所产生的高压和高温,因此对活塞的强度有特别的要求。活塞需要上下移动,为了提高其移动的效率,活塞应选用较轻的材料,且与气缸壁之间的移动阻力要尽量小。另外,为了保证气缸的套筒与活塞间存在一定的阻力,还需要在活塞上安装活塞环。
连杆:连杆是连接活塞和曲轴的棒状零部件。连杆的小端连接活塞,大端连接偏移曲轴的旋转部位,因此将活塞的上下移动传递到了曲轴上。同活塞一样,为了提高效率,要求连杆的材料也拥有轻量、高强度、低移动阻力的性能。
曲轴:曲轴通过连杆接受活塞传递来的上下移动,并将其转变为旋转运动。连杆将上下移动传递到曲轴上距离旋转中心偏移的部位,因此需要曲轴具有较大的刚性。曲轴将旋转运动传递到飞轮上,成为发动机的驱动力。曲轴运转的同时,气门也将随着正时皮带(正时链条)的联动而开启和关闭。
飞轮:气缸内混合气体燃烧后产生高压,施加在活塞上带动曲轴旋转,但曲轴旋转存在不均匀的现象,所以就需要飞轮作为维持惯性的工具,保证曲轴平顺的运转。飞轮越重,就越能使带惯性的发动机更加平滑地运转,但这样却不利于急剧的转速改变,因此选择飞轮时一定要考虑平滑旋转的扭矩和转速改变等性能上的平衡。
气缸的排列:往复式发动机的活塞和气缸相互配合,其数量和排列形式根据用途分为多个种类。小排量发动机多为2~3气缸,1~2L的发动机为4气缸,较大排量的发动机是6气缸。要想使活塞平滑移动,则需要更大的旋转扭矩,但由于直列型气缸的重量大且价格高,因此6缸发动机大多采用V型。水平对置型发动机的优点是振动少,中心高度低;缺点是加工工艺复杂。
发动机的分类和基本(结构)构造原理
发动机根据所用燃料分类:活塞式内燃机主要分为:汽油机、柴油机和气体燃料发动机三类。以汽油和柴油为燃料的活塞式内燃机分别称作汽油机和柴油机。使用天然气、液化石油气和其他气体燃料的活塞式内燃机称作气体燃料发动机。
发动机按冷却方式的不同分类:活塞式内燃机分为水冷式和风冷式两种。以水或冷却液为冷却介质的称作水冷式内燃机,而以空气为向回应会式内燃机。往复活塞式内燃机还按其在一个工作循环期间活塞往复运动的行程数进行分类。
活塞式内燃机每完成一个工作循环,便对外作功一次,不断地完成工作循环,才使热能连续地转变为机械能。在一个工作循环中活塞往复四个行程的内燃机称作四冲程往复活塞式内燃机,而活塞往复两个行程便完成一个工作循环的则称作二冲程往复活塞式内燃机。
发动机按照气缸数目分类可以分为:单缸发动机和多缸发动机。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发动机。
内燃机按照气缸排列方式不同可以分为单列式和双列式:单列式发动机的各个气缸排成一列,一般是垂直布置的,但为了降低高度,有时也把气缸布置成倾斜的甚至水平的;双列式发动机把气缸排成两列,两列之间的夹角180(一般为90)称为V型发动机,若两列之间的夹角=180°称为对置式发动机。
发动机按进气状态不同分类活塞式内燃机还可分为增压和非增压两类。若进气是在接近大气状态下进行的,则为非增压内燃机或自然吸气式内燃机;若利用增压器将进气压力增高,进气密度增大,则为增压内燃机。增压可可必回空念
目前,应用最广、数量最多的汽车发动机为水冷、四冲程往复活塞式内燃机,其中汽油机用于轿车和轻型客、货车上,而大客车和中、重型货车发动机多为柴油机。少数轿车和轻型客、货车发动机也有用柴油机的。以风冷或二冲程活塞式内燃机为动力的汽车为数不多。特别是从20世纪80年代起,在世界范围内,就不再有以二冲程活塞式内燃机为动力的轿车了。
by快乐绘画家
四冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。
进气行程
化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混合气便经进气管道和进气门被吸入气缸。
压缩行程
为使吸入气缸内可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,即需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程称为压缩行程。
压缩终了时,活塞到达上止点,活塞上方形成很小空间,称为燃烧室。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比,以ε表示:
压缩比愈大,在压缩终了时混合气的压力和温度便愈高,,燃烧速度也愈快,因而发动机发出的功率愈大,经济性愈好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃造成的一种不正常燃烧。爆燃时火焰以极高的速率向外传播,甚至在气体来不及膨胀的情况下,温度和压力急剧升高。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。表面点火是由于燃烧室内炽热表面与炽热处(如排气门头,火花塞电极,积炭处)点燃混合气产生的另一种不正常燃烧(也称为炽热点火或早燃)。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机件负荷增加,寿命降低。
作功行程
在这个行程中,进、排气门仍旧关闭。当活塞接近上止点时,装在气缸盖上的火花塞即发出电火花,点燃被压缩的可燃混合气。可燃混合气被燃烧后,放出大量的热能,因此,燃气的压力和温度迅速增加,所能达到的最高压力约为3-5Mpa,相应的温度则为2200-2800K。高温高压的燃气推动活塞从上止点向下止点运动,通过连杆使曲轴旋转并输出机械能,除了用于维持发动机本身继续运转而外,其余即用于对外作功。
排气行程
可燃混合气燃烧后生成的废气,必须从气缸中排除,以便进行下一个进气行程。
当膨胀接近终了时,排气门开启,靠废气的压力进行自由排气,活塞到达下止点后再向上止点移动时,继续将废气强制排到大气中。活塞到上止点附近时,排气行程结束。在排气行程中气缸内压力稍高于大气压力,约为0.105-0.115Mpa。排气终了时,废气温度约为900-1200K。
由于燃烧室占有一定容积,因此在排气终了时,不可能将废气排尽,留下的这一部分废气称为残余废气。
综上所述,四冲程汽油发动机经过进气、压缩、燃烧作功、排气四个行程,完成一个工作循环。这期间活塞在上、下止点间往复移动了四个行程,相应地曲轴旋转了两周。
汽车发动机结构组成(汽车发动机的组成有哪些分别是什么) ♂
汽车发动机结构组成(汽车发动机的组成有哪些分别是什么)- 汽车发动机的组成有哪些分别是什么
- 汽车发动机由哪些部分组成
- 发动机由哪几部分组成
- 汽车发动机由哪几个部分组成
汽车发动机是由五大系统和两大机构组成的,两大机构是曲柄连杆机构和配气机构。五大系统是燃料供给系统,冷却系统,润滑系统,点火系统,起动系统。
发动机并不是一体的,发动机从上到下有气门室盖,汽缸盖,汽缸体,油底壳,这几个部分之间还有密封垫。
在发动机内部有连杆,活塞,曲轴,气门,凸轮轴,平衡轴等。
发动机被称为汽车的心脏,发动机负责为汽车提供动力。
在汽车上,还有一个非常重要的部件,那就是变速箱。变速箱起到变速变扭的作用,变速箱属于传动系统,变速箱可以将汽车发动机产生的动力传递到车轮上,并且变速箱变速变扭后输出的动力能够满足汽车在各种工况下的需要。
汽车发动机汽缸种类有很多,例如直列汽缸,v型汽缸,w型汽缸,水平对置汽缸等。
常见的家用车一般都搭载直列四缸发动机,有些高性能车会搭载v型汽缸发动机,还有一些品牌旗下的汽车会使用水平对置汽缸发动机。
望采纳!谢谢
发动机是由曲柄连杆机构和配气机构两大机构,以及冷却、润滑、点火、燃料供给、启动系统等五大系统组成。
1、曲柄连杆机构的作用是提供燃烧场所,把燃料燃烧后产生的气体作用在活塞顶上的膨胀压力转变为曲轴旋转的转矩,不断输出动力。
2、配气机构定时开启和关闭各气缸的进、排气门,使新鲜的可燃混合气(汽油机)或空气(柴油机)得以及时进入气缸,废气得以及时从气缸排出
3、汽车冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。
4、润滑系统的功用就是在发动机工作时连续不断地把数量足够、温度适当的洁净机油输送到全部传动件的,并在之间形成油膜。
5、汽车点火系统是点燃式发动机为了正常工作,按照各缸点火次序,定时地供给火花塞以足够高能量的高压电(大约15000~30000V),使火花塞产生足够强的火花,点燃可燃混合气。
6、供给系统根据发动机各种不同工况的要求,配制出一定数量和浓度的可燃混合气,供入气缸,使之在临近压缩终了时点火燃烧而膨胀做功。最后,供给系统还应将燃烧产物——废气排入大气中。
7、启动系统保证混合气的形成、压缩和点火能够顺利进行。
发动机由七大块组成,每一部分都有自己的功能。分别为:
一、机体组
1、组成:气缸盖、气缸体和曲轴箱
2、作用:作为发动机各机构、各系统的装配基体,是支撑和固定曲柄连杆机构及其他装置的骨架,与拖拉机底盘的相关部件组成拖拉机的车架。
机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、汽缸套、气缸盖和气缸垫等零件组成。
二、曲柄连杆机构?
1、组成:主要包括活塞、连杆、曲轴、飞轮等。?
2、作用:动机共有进气、压缩、做功、排气四个行程,在做功行程中,曲柄连杆机构将活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,由于惯性作用又把曲轴的旋转运动转变成活塞的往复直线运动。
总的来说曲柄连杆机构是发动机借以产生并传递动力的机构。通过它把燃料燃烧后发出的热能转变为机械能。
三、配气机构与进排气系统?
1、组成:主要包括进气门、排气门、挺柱、推杆、摇臂、凸轮轴以及凸轮轴正时齿轮(由曲轴正时齿轮驱动)。
2、作用:使可燃混和气及时充入气缸并及时从气缸排出废气。
四、供给系统和调速器?
1、组成:主要包括油箱、沉淀杯、柴油滤清器、输油泵、喷油泵及调速器等。?
2、作用:定时、定量、定压地将清洁的柴油以雾状喷入燃烧室,并根据柴油机的负荷情况,自动调节供油量,以保证发动机最经济的稳定运转。
五、起动装置?
1、组成:起动电动机及其离合机构、飞轮齿圈、起动开关、蓄电池等。?
2、作用:为了使静止的发动机进入工作状态,必须先用外力转动发动机曲轴,使活塞开始上下运动,气缸内吸入可燃混合气,然后依次进入后续的工作循环。而依靠的这个外力系统就是启动系统。
六、冷却系?
1、组成:汽缸体和气缸盖的冷却水套、水泵、节温器、风扇、散热器、水温表等.
2、作用:把受热机件的热量散到空气中去,延缓零件的强度和硬度的下降以致变形损坏,维持相互配合零件的合适的配合间隙,避免润滑油受高温而变质,保证柴油机的正常工作。
七、润滑系?
1、组成:主要包括机油泵、限压阀、机油滤清器、润滑油道等。
2、作用:将润滑油供给作相对运动的零件以减少它们之间的摩擦阻力,减轻机件的磨损。
发动机气门驱动机构采用液压支承滚珠摇臂式结构,发动机工作原理发动机工作原理与现在一般汽油机上普遍采用的液压挺杆式气门驱动机构相比,这种新颖的气门驱动机构具有摩擦扭矩相对较小的优点,因此所需的驱动力亦小,从而可有效减小发动机功耗,降低油耗。
汽车发动机维修(汽车发动机分为几个部分) ♂
汽车发动机维修(汽车发动机分为几个部分)哪些部件通常包括在机动车中?
DA装饰分为第一级维护,高维护和三种维护,每个级别不一样,第一级维护只有罐盖,第二级是拿起生动的插头,改变大而小马赛克活塞环,最三级维护是最多的内容,你说的是燃烧的??油,它仍然非常严重,你跑了多少英里?必须有三级维护!水平出售级别维修水平水平
除了每天维护,清洁,润滑,并附上工作中心内容。然后检查由维护公司执行的系统,操作和汽车维护工作等安全组件。
汽车维护高维护高维护
除了主要维护。进行检查时,调整转向接头,转向摇臂,一个,悬架等排气水坑控制装置等,由企业维护进行汽车维护操作
维护三级维护
相比之下,有一种故障的习惯,三级维护汽车(或三级维护)系统无疑是一个重大进展。特别是水平和高维护,对各种汽车仍然非常有效。如果房东真正认识到“七分,三个部门”的深远含义,汽车维修行业也将有更广泛的发展。
自20世纪50年代前苏联的汽车技术引进以来,我国也有三级(或三级维护)系统的汽车维护,直到现在,一些汽车仍然沿着系统。
基于润滑和修复的第一维护水平的主要内容,需要更换电动机油,并系统检查每个总量的润滑量。当汽车驱动器以指定的时间间隔(通常为1500到2000km)时,维护工作人员使用驱动程序执行。在第一级维护中,它将在“第一次维护”中分类。
在第一级维护中,重点是发动机,传动,制动系统,动力转向系统和音量,冷却系统,清洁系统和电池水平,是必要的。有必要为这项运动添加脂肪(在这些规则中,通常有组织酱,易于使用浆果添加脂肪)。应检查和连接到暴露部分的连接。清洁各种过滤器,单体化器和汽油泵。
在维护第一级,它强调润滑和修复,因为每位经营方在汽车的早期操作中并不完全磨削,特别是高速运动运动部件,一些金属面包屑落在油中,如果它不及时清除,他们会刺激移动部件。由每个移动的高速相对运动引起的高温会使脂肪挥发,一旦干燥摩擦,移动部件将很快损坏。因此,您必须注意常规添加脂肪。许多维修和所有者经常不注意连接器的检查,这是非常危险的。这是非常危险的。如果你有一个错机,你可能会造成意外。在20世纪60年代初,我国里有一个贵宾和罗马尼亚和一辆红旗车。坐在下水的汽车座椅,刹车突然丢失了。幸运的是,司机匆忙,车急着,车急于,车里的汽车锻炼,而这辆车撞到了大树的道路旁边的道路上,避免人身伤害,但影响已经很差。红旗的轿车是双管制动器,有一个双重保险功能,怎么可以修理?检查后,发现制动杆制动器松动,小螺钉松动,已变成。巨大的意外,课程非常深刻。
也称为高维护,习惯了保证。它被检查并调整为中心,除了执行主要维护操作外,还需要更换三个过滤(即:滤油器,过滤器,过滤空气),检查和调节发动机,制动系统和电气设备,拍摄轮胎等。这部分工作更专业,通常在专业维护中进行。
除了主要维护的运作外,第二保险还增加了以下项目:
1.使用电子诊断故障检查故障系统,如部分故障应反映所有者,并及时修复。
2,逐步促进集成探测器引擎完全检测发动机的特性,从而确定是否需要修复和调整项目。
3.检查气缸压力。当存在条件时,应清洁自由清洗仪中的油通道,取出碳液,脂肪和口香糖。
4,清洁油,气泵,根据需要调整学校的测试台。
5.对于柴油发动机,检查和调节气体喷射压力,燃料喷射量和油泵中的每个汽缸平衡。
6.检查,清洁和调整电气系统的电路,还应涂上各种部件,发电机,初学者等。
7.检查机箱上的每个组件,每个部件都没有设置,更换零件组;润滑油不足或因相同的替代补充而受到污染
8,检查并调整4轮。
9,检测和调整仪器和光线。
检测空调装置和装置的功能。
10.检查出租车,门窗,椅子,门锁,升降玻璃和各种类型的完整性。
11.检查轮胎压力并按照规则转移或更换局面。
高维护是一个相对完整的测试,在IT曝光和解决故障的存在中,确保汽车的各个部分和正常状态的车辆的性能,这在维护汽车中起重要作用。然而,最简单的问题遭遇是修理工通常只取代三个过滤,更换油,它是敷衍的。这远非高维护的条件。除了集成的发动机检查员检查一个,汽车维修店还有一些困难,业主必须监督维修店以完成规定的运营。
维护三级和拆卸组件,清洁,检验,调整,消除隐藏危险,除了高维护之外,还应更深入地清洁和检查,并且每个组件或组装的组装是必需的。消除故障,取出碳液体,油和接头。清洗油通道,缩放拆卸,清洁外壳油和燃油罐,拆卸,调整总底盘,清洁油,检查并调整四轮位置,检查框架和机身进行检查,防锈和触摸。这些作品应由专业维护工人进行。
三级维护不再强调其工作内容在基本上设定在审查大会的范围内,并可以参考大会的相关规定。新发展维护工作和大量的高科技,更多的方式维护维护,提高,完善。三级维护系统已更改为高维护系统。过去的维修主要是作为维护,强调汽车的维护系统,应用第一次安全,预防和鼓励“七个维护点,三重维修。不再需要常规日常上下文拆迁。
现代汽车的性能和质量显着提高,服务生活非常延长。一些大装配可以很长一段时间。例如,捷达轿车拥有超过500,000英里。对于汽车,它可以使用20多年,直到汽车汇票;梅赛德斯-奔驰在柴油机OM404保证了一段时间检查80至100万英里,即使是汽车业务也足以享受生活。因此,我国沟通部将明确提出在公路运输车辆规定“维护管理政策”中的道路运输车辆的维护:日常维护,一级维护,维护,维护,维护。
第98顺序细分三个阶段的高维护(维护)测试:
1,高维护前的诊断测试。主要用于驾驶员的反思和汽车外部检查,设备用于诊断车辆以确定高维护中的额外操作项目。2.在高维护操作期间检测。它主要是在维护生产过程中的第二级汽车维修的质量,问题现及其问题在于,维护企业根据标准和档档进行。
3.高维护维护维护。它主要测试高维护和更多操作项目的运行质量,并且必须根据标准进行综合性能测试测试,并将提供测试报告作为企业检查员良好维护的基础。
在这里,需要指出汽车站的全部性能测试,我们用于检测线,交通管理部门根据沟通部统一审查,有相应的权威。该车可以检测其汽车外观和气体技术底盘,气体在废气管道中排气,排气烟,滑轮,扬声器,速度表,在大照明和光学角度轴之前,重量轴,汽车重量和制动性能等,几乎各种类型的性能指标需要确定汽车,并使用电脑直接打印出相关数据,他有资格知道。汽车应每年进行,是当地交通管制部门验证的检测线的必要条件之一。
新的I/M维修系统
I/M是英语检查和维护的缩写,即中国检验和维??护。I/M系统是世界上世界发展的系统和地区,以及世界上汽车的强制性定期检测,以及原始标准和使用汽车时恢复的原始标准。符合状态的指定控制排放。
众所周知,汽车的排放污染严重影响人类的生活环境。汽车通过了测试,但经过一定的操作,工作条件可以改变,排放可能超过标准,因此有必要能够稳定地控制每辆车以保持标准系列。I/M系统的实现正在调整最佳状态的发动机的工作状态,尽可能最大限度地减少排气污染。
我/男性新概念系统维修系统的应用正在取代传统的拆卸维修和高科技退休技术,更换外部拆卸和维修和不间断的内部维护,以及每日更换维护“操作”。实现免费拆卸,维护操作,使汽车达到了生活的目的。
现在在我的国家/地区/男性汽车维修系统刚刚发生。许多人甚至混淆了汽车保护和美容轿车。要知道汽车的维护包括美容内容机,但远远超过美是如此简单,它具有更丰富的意义。汽车发动机的维护主要包括:更换或修理气缸线,活塞,活塞环。轴,连接杆,大瓷砖,燃烧油主要是因为气缸夹克,小号,活塞严重,或管道和阀门导管之间的差异太大,因此燃烧油的破坏是生产。该组车辆与英里数无关,以及替换油的次数,清洁气体的程度和与密封件有关的空气过滤器的维护。包含在电机修订中的许多配件通常:大型维修(包含所有配件和密封件),活塞,活塞环,气缸线,村,停止垫,液压龙头和管道。还有整车的油,以及所有隐藏危险的隐藏部件。当然,该过程小于:气缸头,煤气门,砂浆箱,学校链接。
汽车电机结构和维护。
首先,发动机由两个主要机构和五个系统组成:
首先,曲柄连杆机构
曲柄连杆机构是糖工作的发动机应用,完成能量转换,完成。它由一个体组,一组活塞链接和一组飞轮轴组成。
二,通风
气体供应机构的功能基于工作发动机顺序和加工过程,进气门和排气门开启,排气管回到进入汽缸,它是来自汽缸的废气实现通风过程。在由凸轮轴控制的排气阀的开口和关闭处。凸轮轴由牙刷或齿轮或链条的轴驱动。拍摄,排气和凸轮轴和其他部分的零件
第三,供气系统
天然气工程系统的功能基于发动机要求,配制了一定量和浓度的混合气体,供应到气缸,并从气缸中排出排气,四个,功能润滑系统清洁机的短缺释放到相对运动的表面以实现液体摩擦,减少摩擦阻力,减少了一组汽车。并清洁和冷却表面表面。润滑通常由润滑油径,油泵,油过滤器和一些管道组成。
V.冷却冷却系统的功能是热量的热量,以吸收热区域,以确保发动机在最合适的温度下操作。水冷发动机的冷却系统通常由冷却水夹套,水泵,风扇,水箱,恒温等组成。
第六,点火系统在发动机汽油中,并且混合物在由电火花触发的汽缸中易燃。因此,将火花塞放置在汽油发动机的气缸头上,顶部火花塞燃烧。所有可以在火花塞选出之间产生电火花的设备随着时间的推移,点火系统通常由电池,发电机,分配器,点火线圈和火花塞组成。
7.系统开始并不困难。为了使电动机从状态的静止状态转变,必须先将轴转入发动机,使小号跟随升级,并且易燃空气混合在汽缸工作中燃烧,推动较低运动旋转的活塞轴和发动机可以自身操作,并且可以自动设计工作循环。因此,轴开始在发动机中旋转以开始操作自动空闲,参考发动机的开始。完成过程所需的设备开始调用引擎的起始系统。
修复引擎:
1.如果在气体供应系统中
(1)每个房间的气体供应
(2)燃气管堵塞
(3)滤波器滤波器堵塞
⑷⑷油泵不提供油或持续的供水
⑸⑸⑸⑸油油油低低低低低
(1)检查气管接头是否松动。拧紧弯曲燃气泵和燃料过滤器上的凸起,使用手动油泵挤压油或漫游气罐机以排除供气供应的空气供应
(2)检查水龙头是否光滑,并撒上管道
(3)清洁过滤器
⑷检查油管是否流动,例如油管中的空气泄漏,不应密封,加油泵应保持。
⑸取出注射,始终连接到高压管,旋转轴和起动器驱动气体注入手枪。如果有必要,请遵守射击和粉碎,取下检查并重新调整
原因2,启动系统故障
(1)在线开始是正确或不良的接触。
(2)电池容量不足
(3)刷子开始电气与整流器接触不良
⑷⑷⑷空空
(1)检查线路连接状态和连接线。
(2)检查电池和负载的能力
(3)消除整个流量和好纸的表面,灰尘带走,或更换刷子
⑷检查起动器安装和摩擦离合器是否正常
原因3,压缩圆筒压力不足
(1)在活塞环中过度锻造
(2)点击
(1)更换活塞环
(2)检查空间阀中的密封,弹簧阀,阀门和座椅阀门,如果接触阀环是僵尸腹,阀门应研磨。
故障原因4,消耗不顺畅
(1)被阻止时的消耗
(2)滤波器堵塞时
(1)清除堵塞和障碍
(2)清洁空气过滤器
故障原因5,其他原因
(1)描述离合器踏板无法启动,并且您可以在步进离合器踏板后开始。
(2)发动机中润滑的粘度太大,当温度低时,轴难以旋转。
(3)天然气规格不是
⑷⑷轮圈松
⑸环境温度和发动机温度太低
(1)检查离合器和变速器
(2)根据结算选择润滑
(3)根据规则燃料
衍生。更换车轮和齿圈,在方向盘上的齿圈
⑸低温市场设备使用不正确
汽车发动机分为几个部分,是什么功能?
汽车发动机是车辆的发电厂,为汽车提供电源来源,由两家机构中的五个主要系统组成(曲柄连杆机构和气体供应机构;供气系统,冷却系统,润滑系统,点火系统并启动系统),汽车发动机与五种系统的合作,气体的化学能在主要机构的连接和运行中转换成动力学机械能,并更新转换成旋转运动的线路运动。在发动机中是汽车的“心脏”,为汽车运行提供基本动力。确保。以上部分是汽车发动机的结构:
发动机是汽车的电厂
根据气体分离有两种类型的汽油和柴油发动机;
两门课程和四门课程分为手术,整体发动机是四个中风发动机。
四冲程发动机中的工作过程:四冲程引擎是小号中的四个课程,以完成工作周期,包括消费,压缩,工作和排气。四种类型的柴油发动机和汽油体验了消费,压缩,工作和排气的过程。但与汽油发动机的差异是燃气发动机被触发,发动机柴油燃烧。
汽车发动机由主体,曲柄连杆机构,气体供应机构,冷却系统,润滑系统,气体系统和点火系统(柴油发动机中没有点火系统)组成。
冷却系统:通常由水箱,水泵,散热器,风扇,恒温器,水温和水开关组成。汽车发动机使用两种冷却方法,即冷却和冷却水。通常,汽车发动机更加冷却水。
润滑系统:润滑引擎由油泵,收集器,滤油器,油通道,阀门限制,仪表发动机,应力插头和油规则组成。
燃油系统:汽油发动机气体系统由燃油罐,汽油量,汽油龙头,汽油滤清器,汽油泵,碳,空气滤网,排气管歧管等组成。
TDM:它是将汽油和空气与一定比例相结合的装置,这是燃料混合的,并且及时提供汽缸。
如果您对机动车有一些常见的问题和维护方法:
发动机无法启动或发动机不会运行,发动机运行,但不起作用。
解决了:您可以通过倾听汽车扬声器的声音和照明照明方法进行初步试验。
现象1:如果扬声器被转发,引擎不会运行,应检查电池。
当维护观察电池中的普通极性电池或孔的颜色可以确定电池电量的发动机无法激活。当电池储存不足时,蒸馏水也可用于纯水。如果它是免维护电池和电力,您只能使用交叉链接方法在其他帮助车辆上制作电池。此时,小心携带发动机电缆,当其他电池电池借用者时,电池中的正极连接到负电极。请注意,汽车引擎必须先启动。
现象2:扬声器和灯光没有异常,但是汽车会将声音发送到“哞,哞”。如果关节紧密,钳子轻轻左右,可以提供关节“咕”移动声音,并且可以进一步得出结论,关节接触差。此时,您可以从自己的气缸和纸上进行选择。当没有纸张时,可以在气缸和笔中清洁左右。
现象3:扬声器很好,发动机不操作,如果发动机供电,可以考虑它。如果发动机本身失效,因为电磁开关发生故障,则必须使用决策引擎并更换组件。
标签:发动机 气缸